$\dfrac{1}{\sqrt{x_1} + \sqrt{x_2}} +\dfrac{1}{\sqrt{x_2} + \sqrt{x_3}} + \cdots + \dfrac{1}{\sqrt{x_{n-1}} + \sqrt{x_n}} = \dfrac{n-1}{\sqrt{x_1} + \sqrt{x_n}}$ Uma dica (pode haver outras formas de resolver) é usar uma indução sobre $n$ Então, começamos verificando que a expressão é verdadeira para $n=2$ (verifica!) Agora, vamos nos ver com uma hipótese: a de que se a expressão é válida para $n$ então será válida para $n + 1$. Se a expressão é válida para $n$ podemos verificar se a seguinte expressão é verdadeira: $\dfrac{n-1}{\sqrt{x_1} + \sqrt{x_n}} + \dfrac{1}{\sqrt{x_n} + \sqrt{x_{n+1}}} = \dfrac{n}{\sqrt{x_1} + \sqrt{x_{n+1}}}$ Agora podemos fazer: $\dfrac{n}{\sqrt{x_1} + \sqrt{x_n}} - \dfrac{n}{\sqrt{x_1} + \sqrt{x_{n+1}}} = \dfrac{1}{\sqrt{x_1} + \sqrt{x_n}} - \dfrac{1}{\sqrt{x_n} + \sqrt{x_{n+1}}}$ $\dfrac{n(\sqrt{x_{n+1}} - \sqrt{x_{n})}}{(\sqrt{x_1} + \sqrt{x_n}) (\sqrt{x_1} + \sqrt{x_{n+1}})} = \dfrac{(\sqrt{x_{n+1}} - \sqrt{x_{1})}}
Eu sempre me incomodei bastante com a tabela do Se... então (implicação). Afinal, a tabela do "e" e a tabela do "ou" são bastante lógicas, se é que eu posso usar este termo numa disciplina que se chama lógica! Poderia dizer também que são tabelas que fazem sentido, afinal, o "e" só resulta "V" se ambos forem "V"; e o "ou" só resulta "F" se ambos forem "F". Mas, e quanto à implicação? Tive minha curiosidade atendida no livro de DAVID J. HUNTER, Fundamentos da Matemática Discreta, em um breve trecho. Esta postagem é uma adaptação minha do que consta lá! Então, podemos usar diversos exemplos! Eu vou usar dois que eu inventei ao escrever esta postagem, e, depois, vou repetir o exemplo do livro citado. Suponha que uma mãe diga o seguinte a seu filho Mateus: Filho, se você fizer todos os exercícios de Matemática, vai tirar nota boa na prova. Suponha então que Mateus quisesse negar este conselho de sua mãe, prova