quinta-feira, 28 de julho de 2016

A Propriedade Arquimediana dos Reais e a Densidade de ℚ em ℝ por Rudin

A Propriedade Arquimediana dos Reais e a Densidade de em por Rudin (pág. 9)

A Propriedade Arquimediana dos Reais e a Densidade de em por Rudin (pág. 9)

Fernando Francisco de Sousa Filho

21/07/2016

(a) Se x ∈ ℝ,  y ∈ ℝ,  e x > 0 então existe um inteiro positivo n tal que
nx > y
(b) Se x ∈ ℝ,  y ∈ ℝ,  e x < y então existe um p ∈ ℚ tal que x < p < y.
A parte (a) é conhecida como a propriedade arquimediana dos reais. A parte (b) pode ser descrita assim: é denso em , ou seja, entre quaisquer dois números reais existe um número racional.
Prova
(a) Seja A o conjunto de todos os elementos nx, onde n pode assumir qualquer valor inteiro positivo. Se (a) fosse falsa, teríamos nx ≤ y , ou seja, y seria uma cota superior do conjunto A. Por outro lado, A é subconjunto dos reais, portanto, se é limitado superiormente, possui a menor cota superior dentro de . Seja então α = supA. Como x > 0 e x ∈ A temos que x < α. Neste caso, α − x < α, logo α − x não é cota superior de A. Se α − x não é cota superior de A então existe um elemento de A maior que α − x. Seja então mx este elemento, com m inteiro positivo. Temos, portanto, que α − x < mx para algum m inteiro positivo. Mas, se isto é verdade, teremos
α − x < mx ⇒ α < (m + 1)x
Aqui chegamos a uma contradição, visto que (m + 1) é um inteiro positivo portanto (m + 1)x ∈ A. Concluímos que A não pode possuir supremo, o que prova (a).
(b) x < y ⇒ y − x > 0.
(a) garante que dado z ∈ ℝ, existe um inteiro positivo n tal que n(y − x) > z, logo, podemos admitir z = 1 e chegamos a
n(y − x) > 1
mas n(y − x) > 1 ⇒ ny − nx > 1 ⇒ ny > nx + 1, que equivale a
nx + 1 < ny
(a) garante ainda que dado nx e 1 > 0, existe m1inteiro positivo tal que 1⋅m1 = m1 > nx. Como esta relação aplica-se a nx > 0, é imediato que aplica-se também a nx ≤ 0.
(a) também garante que, dado  − nx qualquer e 1 > 0, existe m2 inteiro positivo tal que 1⋅m2 = m2 >  − nx. Mas m2 >  − nx ⇒  − m2 < nx. Logo, existem os inteiros positivos m1 e m2 tais que
 − m2 < nx < m1
Tudo isso para concluir que nx está entre dois números inteiros. Como nx é um número real que está entre dois números inteiros, existem dois outros inteiros, m − 1 e m, um sucessor do outro, de tal forma que m − 1 ≤ nx < m, ou seja, nx < m e m − 1 ≤ nx ⇒ m ≤ nx + 1. Portanto, nx é menor que um número inteiro m e nx + 1 é maior ou igual a este mesmo número inteiro m. Assim,
nx < m ≤ nx + 1 < ny
Dividindo-se tudo pelo inteiro positivo n chegamos a
x < (m)/(n) < y
e podemos em fim apresentar p = (m)/(n) ∈ ℚ

Marcadores:

0 Comentários:

Postar um comentário

Assinar Postar comentários [Atom]

<< Página inicial